民初思韻網

加入收藏   設為首頁
選擇語言   簡體中文
你好,請 登陸 或 注冊
首頁 人文思韻 傳奇人物 歷史思潮 時代作品 話題討論 國民思韻 民初捐助 賬戶管理
  搜索  
    時代作品 >>> 讀書—連接古今充實信仰
字體    

量子物理史話 第十章 不等式
量子物理史話 第十章 不等式
曹天元(Capo)     阅读简体中文版

7附圖: cat.gif (14824 字節)

 在多世界奇境中的這趟旅行可能會讓大家困惑不解,但就像愛麗絲在鏡中讀到的那首晦澀的長 詩Jabberwocky,它無疑應該給人留下深刻的印象。的確,想象我們自身隨著時間的流逝不停地分裂 成多個世界里的投影,而這些分身以幾何數目增長,以至無窮。這樣一幅奇妙的景象實在給這個我 們生活其中的宇宙增添了幾分哭笑不得的意味。也許有人會覺得,這樣一個模型,實在看不出有比 “意 識”更加可愛的地方,埃弗萊特,還有那些擁護多世界的科學家們,究竟看中了它哪一點呢?

 不過MWI的好處也是顯而易見的,它最大的豐功偉績就是把 “觀測者 ”這個礙手礙腳的東西從物理 中一腳踢開。現在整個宇宙只是嚴格地按照波函數演化,不必再低聲下氣地去求助于 “觀測者”,或者 “智能生物 ”的選擇了。物理學家現在也不必再為那個奇跡般的 “坍縮”大傷腦筋,無奈地在漂亮的理論 框架上貼上丑陋的補丁,用以解釋R過程的機理。我們可憐的薛定諤貓也終于擺脫了那又死又活的煎 熬,而改為自得其樂地生活(一死一活)在兩個不同的世界中。

 重要的是,大自然又可以自己做主了,它不必在 “觀測者 ”的陰影下戰戰兢兢地茍延殘喘,直到 某個擁有 “意識”的主人賞了一次 “觀測”才得以變成現實,不然就只好在概率波疊加中埋沒一生。在MWI 里,宇宙本身重新成為唯一的主宰,任何觀測者都是它的一部分,隨著它的演化被分裂、投影到各 種世界中去。宇宙的分裂只取決于環境的引入和不可逆的放大過程,這樣一幅客觀的景象還是符合 大部分科學家的傳統口味的,至少不會像哥本哈根派那樣讓人抓狂,以致寢食難安。

 MWI的一個副產品是,它重新回到了經典理論的決定論中去。因為就薛定諤方程本身來說,它 是決定性的,也就是說,給定了某個時刻t的狀態,我們就可以從正反兩個方向推演,得出系統在任 意時刻的狀態。從這個意義上來說,時間的 “流逝”不過是種錯覺!另外,既然不存在 “坍縮”或者R過 程,只有確定的U過程, “隨機性”便不再因人而異地胡攪蠻纏。從這個意義上說,上帝又不擲骰子了, 他老人家站在一個高高在上的角度,鳥瞰整個宇宙的波函數,則一切仍然盡在把握:宇宙整體上還 是嚴格地按照確定的薛定諤方程演化。電子也不必投擲骰子,做出隨機的選擇來穿過一條縫:它同 時在兩個世界中各穿過了一條縫而已。只不過,對于我們這些凡夫俗子,蕓蕓眾生來說,因為我們 糾纏在紅塵之中,與生俱來的限制迷亂了我們的眼睛,讓我們只看得見某一個世界的影子。而在這 個投影中,現實是隨機的,跳躍的,讓人驚奇的。

(*這里順便澄清一下詞語方面的問題,對于MWI,一般人們喜歡把多個分支稱為 “世界”(World), 把它們的總和稱為 “宇宙”(Universe),這樣一來宇宙只有一個,它按照薛定諤方程發展,而 “世界”有 許多,隨著時間不停地分裂。但也有人喜歡把各個分支都稱為 “宇宙”,把它們的總和稱為 “多 宙”(Multiverse),比如著名的多宇宙派物理學家David Deutsch。這只是一個叫法的問題,多世界 還是多宇宙,它們指的是一個意思。)

 然而,雖然MWI也算可以自圓其說,但無論如何,現實中存在著許多個宇宙,這在一般人聽起 來也實在太古怪了。哪怕是出于哲學上的雅致理由(特別是奧卡姆剃刀),人們也覺得應當對MWI采取 小心的態度:這種為了小小電子動輒把整個宇宙拉下水的做法不大值得欣賞。但在宇宙學家中,MWI 卻是很流行和廣受歡迎的觀點。特別是它不要求 “觀測者 ”的特殊地位,而把宇宙的歷史和進化歸結到 它本身上去,這使得飽受哥本哈根解釋,還有參予性模型詛咒之苦的宇宙學家們感到異常窩心。大 致來說,搞量子引力(比如超弦)和搞宇宙論等專業的物理學家比較青睞MWI,而如果把范圍擴大到一 般的“科學家 ”中去,則認為其怪異不可接受的比例就大大增加。在多世界的支持者中,有我們熟悉的 費因曼、溫伯格、霍金,有人把夸克模型的建立者,1969年諾貝爾物理獎得主蓋爾曼(Murray Gell-Mann)也計入其中,不過作為量子論 “一致歷史 ”(consistenthistory)解釋的創建人之一,我們 還是把他留到史話相應的章節中去講,雖然這種解釋實際上可以看作MWI的加強版。

 對MWI表示直接反對的,著名的有貝爾、斯特恩(Stein)、肯特(Kent)、彭羅斯等。其中有些人 比如彭羅斯也是搞引力的,可以算是非常獨特了。

 但是,對于我們史話的讀者們來說,也許大家并不用理會宇宙學家或者其他科學家的哲學口味 有何不同,重要的是,現在我們手上有一個哥本哈根解釋,有一個多宇宙解釋,我們如何才能知道, 究竟應該相信哪一個呢?各人在生活中的審美觀點不同是很正常的,比如你喜歡貝多芬而我喜歡莫 扎特,你中意李白我沉迷杜甫,都沒有什么好大驚小怪,但科學,尤其是自然科學就不同了。科學 之所以偉大,不正是因為它可以不受到主觀意志的影響,成為宇宙獨一無二的法則嗎?經濟學家們 或者為了各種不同的模型而爭得你死我活,但物理學的終極目標不是經世致用,而是去探索大自然 那深深隱藏著的奧秘。它必須以最嚴苛的態度去對待各種假設,把那些不合格的挑剔出來從自身體 系中清除出去,以永遠保持它那不朽的活力。科學的歷史應該是一個不斷檢討自己,不斷以實踐為 唯一準繩,不斷向那個柏拉圖式的理想攀登的過程。為了這一點,它就必須提供一個甄別的機制, 把那些雖然看上去很美,但確實不符合事實的理論踢走,這也就成為它和哲學,或者宗教所不同的 重要標志。

也許我們可以接受那位著名而又飽受爭議的科學哲學家,卡爾•波普爾(Karl Popper) 的意見,把科學和形而上學的分界線畫在 “可證偽性 ”這里。也就是說,一個科學的論斷必須是可能被 證明錯誤的。比如我說: “世界上不存在白色的烏鴉。 ”這就是一個符合“科學方法 ”的論斷,因為只要 你真的找到一只白色的烏鴉,就可以證明我的錯誤,從而推翻我這個理論。但是,如前面我們舉過 的那個例子,假如我聲稱 “我的車庫里有一條看不見的飛龍。 ”,這就不是一個科學的論斷,因為你無 論如何也不能證明我是錯的。要是我們把這些不能證明錯誤的論斷都接受為科學,那“科學”里滑稽的 事情可就多了:除了飛龍以外,還會有三個頭的狗、八條腿的驢,講中文的猴子……無奇不有了。 無論如何,你無法證明 “不存在”三個頭的狗,是吧?

 如果赫茲在1887年的實驗中沒有發現電磁波引發的火花,那么麥克斯韋理論就被證偽了。如果 愛丁頓在1919年日食中沒有發現那些恒星的位移,那么愛因斯坦的相對論就被證偽了(雖然這個實驗 在今天看來不是全無問題)。如果吳健雄等人在1956-1957年的那次實驗中沒有找到他們所預計的效 應,那么楊和李的弱作用下宇稱不守恒設想就被證偽了。不管是當時還是以后,你都可以設計一些 實驗,假如它的結果是某某,就可以證明理論是不正確的,這就是科學的可證偽性。當然,有一些 概念真的被證偽了,比如地平說、燃素、光以太,但不管如何,我們至少可以說它們所采取的表達 方式是符合 “科學”方法的。

 另外一些,比如 “上帝”,那可就難說了,沒有什么實驗可能證明上帝 “不存在”(不是一定要證明 不存在,而是連這種可能都沒有)。所以我們最好還是把它踢出科學領域,留給宗教愛好者們去思考。

 回到史話中來,為了使我們的兩種解釋符合波普爾的原則,我們能不能設計一種實驗,來鑒定 究竟哪一種是可信,哪一種是虛假的呢?哥本哈根解釋說觀測者使得波函數坍縮,MWI說宇宙分裂, 可是,對于現實中的我們來說,這沒有可觀測的區別啊!不管怎么樣,事實一定是電子 “看似”隨機地 按照波函數概率出現在屏幕的某處,不是嗎?就算觀測100萬次,我們也沒法區分哥本哈根和多世界 究竟哪個不對啊!

自70年代以來由澤(Dieter Zeh)、蘇雷克(Wojciech H Zurek)、蓋爾曼等人提出、發展、并走 紅至今的退相干理論(decoherence)對于埃弗萊特的多宇宙解釋似乎有巨大的幫助。我們在前面已經 略微討論過了,這個理論解釋了物體如何由微觀下的疊加態過渡到宏觀的確定態:它主要牽涉到類 如探測器或者貓一類物體的宏觀性,也即比起電子來說多得多的自由度的數量,以及它們和環境的 相互作用。這個理論在MWI里可謂如魚得水,它解釋了為何世界沒有在大尺度下顯示疊加性,解釋了 世界如何 “分裂”,這些都是MWI以前所無法解釋的。籠統地說,當儀器觀測系統時,它同時還與環境 發生了糾纏,結果導致儀器的疊加態迅速退化成經典的關聯。我們這樣講是非常粗略的,事實上可 以從數學上證明這一點。假如我們采用系統所謂的 “密度矩陣 ”(Desity Matrix)來表示的話,那么這 個矩陣對角線上的元素代表了經典的概率態,其他地方則代表了這些態之間的相干關聯。我們會看 到,當退相干產生時,儀器或者貓的密度矩陣迅速對角化,從而使得量子疊加性質一去不復返(參見

附圖)。這個過程極快,我們根本就無法察覺到。

 不過,盡管退相干理論是MWI的一個有力補充,它卻不能說明MWI就是唯一的解釋。退相干可以 解答為什么在一個充滿了量子疊加和不確定的宇宙中,我們在日常大尺度下看世界仍然似乎是經典 和“客觀”的,但它不能解答波函數到底是一直正常發展下去,還是會時不時地躍遷。事實上,我們也 可以把退相干用在哥本哈根解釋里,用來確定 “觀測者 ”和“非觀測者 ”之間的界限 ——按照它們各自的 size,或者自由度的數量!那些容易產生退相干的或許便更有資格作為觀測者出現,所謂的觀測或 許也不過是種不可逆的放大過程。可是歸根到底,我們還是不能確定到底是哥本哈根,還是多宇宙!

 波普爾晚年的時候(他1994年去世),我想他的心情會比較復雜。一方面他當年的一些論斷是對 的,比如量子力學本身的確沒有排除決定論的因素(也沒有排除非決定論)。關于互補原理,當年他 在哥本哈根幾乎被玻爾所徹底說服,不過現在他還是可以重新考慮一下別的alternatives。另一方 面,我們也會很有興趣知道波普爾對于量子論領域各種解釋并立,幾乎無法用實踐分辨開來的現狀 發表會什么看法。

 但我們還是來描述一些有趣的 “強烈支持”MWI的實驗,其中包括那個瘋狂的 “量子自殺 ”,還有目 前炙手可熱,號稱 “利用多個平行世界一起工作 ”的量子計算機。

********* 飯后閑話:證偽和證實

關于 “科學”的界定,證實和證偽兩派一直吵個不休,這個題目太大,我們沒有興趣參予,這里 只是隨便聊兩句證實和證偽的問題。

 怎樣表述一個命題才算是科學的?按照證偽派,它必須有可能被證明是錯誤的。比如 “所有的 烏鴉都是黑的 ”,那么你只要找到一只不是黑色的烏鴉,就可以證明這個命題的錯誤,因此這個命題 沒有問題。相反,如果非要 “證實”才接受這個論斷的話,那可就困難了,而且實際上是不可能的!除 非你把所有的烏鴉都抓來看過,但你又怎么能知道你已經抓盡了天下所有的烏鴉呢?

 對于科學理論來說, “證實”幾乎也是不可能的。比如我們說 “宇宙的規律是F=ma ”,這里說的是 一種普遍性,而你如何去證實它呢?除非你觀察遍了自古至今,宇宙每一個角落的現象,發現無一 例外,你才可以 “證實”這一點。即使這樣,你也無法保證在將來,這條規律仍然起著作用。事實上, 幾乎沒有什么科學理論是可以被 “證實”的,只要它能夠被證明為 “錯”但還未被證明 “錯”(按照波普爾, 以一種積極面對證偽的態度),我們就暫時接受它為可靠的理論。自休謨以來人們已經承認,單靠有 限的個例(哪怕再多)也不能構成證實的基礎。

 不過,按照洛克之類經驗主義者的說法,我們全部知識的基礎都來自于我們的經驗,而科學的 建立,也就是在經驗上的一種歸納主義。好比說,我們每天都看到太陽從東邊升起,幾千年來日日 如此,那么我們應該可以 “合理地”從中歸納出一條規律:太陽每天都從東方升起。并用它來預測明天 太陽依舊要從東方升起。假如墮入休謨的不可知論,那么我們就根本談不上任何 “知識”了,因為反正 明天的一切都是不確定的。

 按照歸納主義,我們從過去的現象中歸納出一種規律,而當這個現象一再重復,則它每次都又 成為對這個規律的再一次 “證實”。比如每次太陽又升起來的時候, “太陽每天從東方升起 ”這個命題的 確定性就被再次稍稍證實。我們每看到一只黑烏鴉,則“烏鴉都是黑的 ”這個命題的正確性就再次稍稍 上升,直到我們遇到一只不黑的烏鴉為止。

 我們大多數人也許都是這樣以為的,但這種經驗主義又會導出非常有趣的結果。我們來做這樣 一個推理,大家都知道,一個命題的逆否命題和它本身是等價的。比如 “烏鴉都是黑的 ”,可以改為等

價的命題 “凡不黑的都不是烏鴉 ”。現在假如我們遇見一只白貓,這個現象無疑證實了 “凡不黑的都不 是烏鴉 ”(白貓不黑,白貓也不是烏鴉)的說法,所以同樣,它也再次稍稍證實了 “烏鴉都是黑的 ”這個 原命題。

 總而言之, “遇見一只白貓 ”略微增加了 “烏鴉都是黑的 ”的可能性。有趣吧?

 這個悖論由著名的德國邏輯實證論者亨普爾(Carl G Hempel)提出,他年輕時也曾跟著希爾伯 特學過數學。如果你接受這個論斷,那么下次導師叫你去野外考察證明例如 “昆蟲都是六只腳 ”之類的 命題,你大可不必出外風吹雨淋。只要坐在家里觀察大量 “沒有六只腳的都不是昆蟲 ”的事例(比如桌 子、椅子、臺燈、你自己……),你可以和在野外實際觀察昆蟲對這個命題做出同樣多的貢獻!

 我們對于認識理論的了解實在還是非常膚淺的。

 令人毛骨悚然和啼笑皆非的 “量子自殺”實驗在80年代末由Hans Moravec,BrunoMarchal等人提 出,而又在1998年為宇宙學家Max Tegmark在那篇廣為人知的宣傳MWI的論文中所發展和重提。這實 際上也是薛定諤貓的一個真人版。大家知道在貓實驗里,如果原子衰變,貓就被毒死,反之則存活。 對此,哥本哈根派的解釋是:在我們沒有觀測它之前,貓是 “又死又活”的,而觀測后貓的波函數發生 坍縮,貓要么死要么活。MWI則聲稱:每次實驗必定同時產生一只活貓和一只死貓,只不過它們存在 于兩個平行的世界中。

 兩者有何實質不同呢?其關鍵就在于,哥本哈根派認為貓始終只有一只,它開始處在疊加態, 坍縮后有50%的可能死,50%的可能活。而多宇宙認為貓并未疊加,而是 “分裂”成了兩只,一死一活, 必定有一只活貓!

 現在假如有一位勇于為科學獻身的仁人義士,他自告奮勇地去代替那只倒霉的貓。出于人道主 義,為了讓他少受痛苦,我們把毒氣瓶改為一把槍。如果原子衰變(或者利用別的量子機制,比如光 子通過了半鍍銀),則槍就 “砰”地一響送我們這位朋友上路。反之,槍就只發出 “咔”地一聲空響。

 現在關鍵問題來了,當一個光子到達半鍍鏡的時候,根據哥本哈根派,你有一半可能聽到 “咔” 一聲然后安然無恙,另一半就不太美妙,你聽到 “砰”一聲然后什么都不知道了。而根據多宇宙,必定 有一個你聽到 “咔”,另一個你在另一個世界里聽到 “砰”。但問題是,聽到 “砰”的那位隨即就死掉了, 什么感覺都沒有了,這個世界對 “你”來說就已經沒有意義了。對你來說,唯一有意義的世界就是你活 著的那個世界。

 所以,從人擇原理(我們在前面已經討論過人擇原理)的角度上來講,對你唯一有意義的 “存在” 就是那些你活著的世界。你永遠只會聽到 “咔”而繼續活著!因為多宇宙和哥本哈根不同,永遠都會有 一個你活在某個世界!

 讓我們每隔一秒鐘發射一個光子到半鍍鏡來觸動機關。此時哥本哈根預言,就算你運氣非常之 好,你也最多聽到好幾聲 “咔”然后最終死掉。但多宇宙的預言是:永遠都會有一個 “你”活著,而他的 那個世界對 “你”來說是唯一有意義的存在。只要你坐在槍口面前,那么從你本人的角度來看,你永遠 只會聽到每隔一秒響一次的 “咔”聲,你永遠不死(雖然在別的數目驚人的世界中,你已經尸橫遍野,

但那些世界對你沒有意義)!

 但只要你從槍口移開,你就又會聽到 “砰”聲了,因為這些世界重新對你恢復了意義,你能夠活 著見證它們。總而言之,多宇宙的預言是:只要你在槍口前,(對你來說)它就絕對不會發射,一旦 你移開,它就又開始隨機地 “砰”。

 所以,對這位測試者他自己來說,假如他一直聽到 “咔”而好端端地活著,他就可以在很大程度 上確信,多宇宙解釋是正確的。假如他死掉了,那么哥本哈根解釋就是正確的。不過這對他來說也 已經沒有意義了,人都死掉了。

 各位也許對這里的人擇原理大感困惑。無論如何,槍一直“咔”是一個極小極小的概率不是嗎(如 果n次,則概率就是1/2^n)?怎么能說對你而言槍 “必定”會這樣行動呢?但問題在于, “對你而言”的 前提是, “你”必須存在!

 讓我們這樣來舉例:假如你是男性,你必定會發現這樣一個 “有趣”的事實:你爸爸有兒子、你 爺爺有兒子、你曾祖父有兒子……一直上溯到任意n代祖先,不管歷史上冰川嚴寒、洪水猛獸、兵荒 馬亂、饑餓貧瘠,他們不但都能存活,而且子嗣不斷,始終有兒子,這可是一個非常小的概率(如果 你是女性,可以往娘家那條路上推)。但假如你因此感慨說,你的存在是一個百年不遇的 “奇跡”,就 非常可笑了。很明顯,你能夠感慨的前提條件是你的存在本身!事實上,如果 “客觀”地講,一個家族 n代都有兒子的概率極小,但對你我來說,卻是 “必須”的,概率為100%的!同理,有人感慨宇宙的精 巧,其產生的概率是如此低,但按照人擇原理,宇宙必須如此!在量子自殺中,只要你始終存在, 那么對你來說槍就必須100%地不發射!

 但很可惜的是:就算你發現了多宇宙解釋是正確的,這也只是對你自己一個人而言的知識。就 我們這些旁觀者而言事實永遠都是一樣的:你在若干次 “咔”后被一槍打死。我們能夠做的,也就是圍 繞在你的尸體旁邊爭論,到底是按照哥本哈根,你已經永遠地從宇宙中消失了,還是按照MWI,你仍 然在某個世界中活得逍遙自在。我們這些 “外人”被投影到你活著的那個世界,這個概率極低,幾乎可 以不被考慮,但對你 “本人”來說,你存在于那個世界卻是100%必須的!而且,因為各個世界之間無法 互相干涉,所以你永遠也不能從那個世界來到我們這里,告訴我們多宇宙論是正確的!

 其實,Tegmark等人根本不必去費心設計什么 “量子自殺”實驗,按照他們的思路,要是多宇宙解 釋是正確的,那么對于某人來說,他無論如何試圖去自殺都不會死!要是他拿刀抹脖子,那么因為 組成刀的是一群符合薛定諤波動方程的粒子,所以總有一個非常非常小,但確實不為0的可能性,這 些粒子在那一剎那都發生了量子隧道效應,以某種方式絲毫無損地穿透了該人的脖子,從而保持該 人不死!當然這個概率極小極小,但按照MWI,一切可能發生的都實際發生了,所以這個現象總會發 生在某個世界!在 “客觀”上講,此人在99.99999…99%的世界中都命喪黃泉,但從他的 “主觀視角 ”來 說,他卻一直活著!不管換什么方式都一樣,跳樓也好,臥軌也好,上吊也好,總存在那么一些世 界,讓他還活著。從該人自身的視角來看,他怎么死都死不掉!

 這就是從量子自殺思想實驗推出的怪論,美其名曰 “量子永生 ”(quantumimmortality)。只要從 主觀視角來看,不但一個人永遠無法完成自殺,事實上他一旦開始存在,就永遠不會消失!總存在 著一些量子效應,使得一個人不會衰老,而按照MWI,這些非常低的概率總是對應于某個實際的世界! 如果多宇宙理論是正確的,那么我們得到的推論是:一旦一個 “意識”開始存在,從它自身的角度來看, 它就必定永生!(天哪,我們怎么又扯到了 “意識”!)

 這是最強版本的人擇原理,也稱為 “最終人擇原理 ”。

 可以想象,Tegmark等多宇宙論的支持者見到自己的提議被演繹成了這么一個奇談怪論后,是 怎樣的一種哭笑不得的心態。這位賓夕法尼亞大學的宇宙學家不得不出來聲明,說 “永生”并非MWI的

正統推論。他說一個人在 “死前”,還經歷了某種非量子化的過程,使得所謂的意識并不能連續過渡保 持永存。可惜也不太有人相信他的辯護。

 關于這個問題,科學家們和哲學家們無疑都會感到興趣。支持MWI的人也會批評說,大量宇宙 樣本中的 “人”的死去不能被簡單地忽略,因為對于 “意識”我們還是幾乎一無所知的,它是如何 “連續存 在”的,根本就沒有經過考察。一些偏頗的意見會認為,假如說 “意識”必定會在某些宇宙分支中連續 地存在,那么我們應該斷定它不但始終存在,而且永遠 “連續”,也就是說,我們不該有 “失去意識 ”的 時候(例如睡覺或者昏迷)。不過,也許的確存在一些世界,在那里我們永不睡覺,誰又知道呢?再 說,暫時沉睡然后又蘇醒,這對于 “意識”來說好像不能算作 “無意義 ”的。而更為重要的,也許還是如 何定義在多世界中的 “你”究竟是個什么東西的問題。總之,這里面邏輯怪圈層出不窮,而且幾乎沒有 什么可以為實踐所檢驗的東西,都是空對空。我想,波普爾對此不會感到滿意的!

 關于自殺實驗本身,我想也不太有人會僅僅為了檢驗哥本哈根和MWI而實際上真的去嘗試!因 為不管怎么樣,實驗的結果也只有你自己一個人知道而已,你無法把它告訴廣大人民群眾。而且要 是哥本哈根解釋不幸地是正確的,那你也就嗚乎哀哉了。雖說 “朝聞道,夕死可矣 ”,但一般來說,聞 了道,最好還是利用它做些什么來得更有意義。而且,就算你在槍口前真的不死,你也無法確實地 判定,這是因為多世界預言的結果,還是只不過僅僅因為你的運氣非常非常非常好。你最多能說: “我 有99.999999..99%的把握宣稱,多世界是正確的。 ”如此而已。

根據Shikhovtsev最新的傳記,埃弗萊特本人也在某種程度上相信他的 “意識”會沿著某些不通向 死亡的宇宙分支而一直延續下去(當然他不知道自殺實驗)。但具有悲劇和諷刺意味的是,他一家子 都那么相信平行宇宙,以致他的女兒麗茲(Liz)在自殺前留下的遺書中說,她去往 “另一個平行世界 ” 和他相會了(當然,她并非為了檢驗這個理論而自殺)。或許埃弗萊特一家真的在某個世界里相會也 未可知,但至少在我們現在所在的這個世界(以及絕大多數其他世界)里,我們看到人死不能復生了。 所以,至少考慮在絕大多數世界中家人和朋友們的感情,我強烈建議各位讀者不要在科學熱情的驅 使下做此嘗試。

 我們在多世界理論這條路上走得也夠久了,和前面在哥本哈根派那里一樣,我們的探索越到后 來就越顯得古怪離奇,道路崎嶇不平,雜草叢生,讓我們筋疲力盡,而且最后居然還會又碰到 “意識”, “永生”之類形而上的東西(真是見鬼)!我們還是知難而退,回到原來的分岔路口,再看看還有沒有別 的不同選擇。不過我們在離開這條道路前,還有一樣東西值得一提,那就是所謂的 “量子計算機 ”。1977 年,埃弗萊特接受惠勒和德威特等人的邀請去德克薩斯大學演講,午飯的時候,德威特特意安排惠 勒的一位學生坐在埃弗萊特身邊,后者向他請教了關于希爾伯特空間的問題。這個學生就是大衛 •德義奇(David Deutsch)。

 計算機的發明是20世紀最為重要的事件之一,這個新生事物的出現從根本上改變了人類的社 會,使得我們的能力突破極限,達到了一個難以想象的地步。今天,計算機已經滲入了我們生活的 每一個角落,離開它我們簡直寸步難行。別的不說,各位正在閱讀的本史話,便是用本人的膝上型 計算機輸入與編輯的,雖然拿一臺現代的PC僅僅做文字處理簡直是殺雞用牛刀,或者拿伊恩• 斯圖爾特的話說, “就像開著羅爾斯•羅伊斯送牛奶 ”,但感謝時代的進步,這種奢侈品畢竟已 經進入了千家萬戶。而且在如今這個信息商業社會,它 的更新換代是如此之快,以致人們每隔兩三年就要不斷地開始為自己 “老舊”電腦的升級而操心,不無 心痛地向資本家們掏出那些好不容易積攢下來的銀子。

 回頭看計算機的發展歷史,人們往往會慨嘆科技的發展一日千里,滄海桑田。通常我們把賓夕 法尼亞大學1946年的那臺ENIAC看成世界上的第一臺電子計算機,不過當然,隨著各人對 “計算機”這 個概念的定義不同,人們也經常提到德國人Konrad Zuse在1941年建造的Z3,伊阿華州立大學在二戰

時建造的ABC(Atanasoff-Berry Computer),或者圖靈小組為了破解德國密碼而建造的Collosus。不 管怎么樣,這些都是笨重的大家伙,體積可以裝滿整個房間,有的塞滿了難看的電子管,有的拖著 長長的電線,輸入輸出都靠打孔的紙或者磁帶,和現代輕便精致的家庭電腦比起來,就好像美女與 野獸的區別。但是,如果我們把看起來極為不同的這兩位從數學上理想化,美女和野獸在本質上卻 是一樣的!不管是龐大的早期計算機,還是我們現在使用的PC,它們其實都可以簡化成這樣一種機 器:它每次讀入一個輸入,并且視自己當時內態的不同,按照事先編好的一個規則表做出相應的操 作:這操作可以是寫入輸出,或者是改變內態,或者干脆什么都不做乃至停機。這里的關鍵是,我 們機器的輸入和輸出可以是無限多的,但它的內態和規則表卻必須是有限的。這個模型其實也就是 一切“計算機 ”的原型,由現代計算機的奠基人之一阿蘭•圖靈(Alan Turing)提出,也稱作 “圖 靈機”(The Turing Machine)。在圖靈的原始論文中,它被描述成某種匣子樣的東西,有一根無限長 的紙帶貫穿其中,一端是作為輸入,另一端則是輸出。磁帶上記錄了信息,一般來說是0和1的序列。 這臺機器按照需要移動磁帶,從一端讀入數據,并且按照編好的規則表進行操作,最后在另一端輸 出運算結果。

 我們如今所使用的電腦,不管看上去有多精巧復雜,本質上也就是一種圖靈機。它讀入數據流, 按照特定的算法來處理它,并在另一頭輸出結果。從這個意義上來講,奔騰4和286的區別只不過是 前者更快更有效率而已,但它們同樣做為圖靈機來說,所能做到的事情其實是一樣多的!我的意思 是,假如給予286以足夠的時間和輸出空間(可以記錄暫時的儲存數據),奔騰機所能做到的它同樣可 以做到。286已經太高級了,即使退化成圖靈機最原始的形式,也就是只能向左或向右移動磁帶并做 出相應行動的那臺機器,它們所能解決的事情也是同樣多的,只不過是快慢和效率的問題罷了。

 計算機所處理的信息在最基本的層面上是2進制碼,換句話說,是0和1的序列流。對計算機稍 稍熟悉的朋友們都知道,我們把每一 “位”信息稱作一個 “比特”(bit,其實是binary digit的縮寫), 例如信息1010,就包含了4個bits。8個bits就等于1個byte,1024個bytes就是1K,1024K=1M,1024M=1G,各位想必都十分清楚了。

 對于傳統的計算機來說,1個bit是信息的最小單位。它要么是0,要么是1,對應于電路的開或 關。假如一臺計算機讀入了10個bits的信息,那相當于說它讀入了一個10位的2進制數(比方說 1010101010),這個數的每一位都是一個確定的0或者1。這在人們看來,似乎是理所當然的。

 但是,接下來就讓我們進入神奇的量子世界。一個bit是信息流中的最小單位,這看起來正如 一個量子!我們回憶一下走過的路上所見到的那些奇怪景象,量子論最叫人困惑的是什么呢?是不 確定性。我們無法肯定地指出一個電子究竟在哪里,我們不知道它是通過了左縫還是右縫,我們不 知道薛定諤的貓是死了還是活著。根據量子論的基本方程,所有的可能性都是線性疊加在一起的! 電子同時通過了左和右兩條縫,薛定諤的貓同時活著和死了。只有當實際觀測它的時候,上帝才隨 機地擲一下骰子,告訴我們一個確定的結果,或者他老人家不擲骰子,而是把我們投影到兩個不同 的宇宙中去。

 大家不要忘記,我們的電腦也是由微觀的原子組成的,它當然也服從量子定律(事實上所有的 機器肯定都是服從量子論的,只不過對于傳統的機器來說,它們的工作原理并不主要建立在量子效 應上)。假如我們的信息由一個個電子來傳輸,我們規定,當一個電子是 “左旋”的時候,它代表了0, 當它是 “右旋”的時候,則代表1(通常我們會以 “上”和“下”來表示自旋方向,不過可能有讀者會對 “上旋” 感到困惑,我們換個稱呼,這無所謂)。現在問題來了,當我們的電子到達時,它是處于量子疊加態 的。這豈不是說,它同時代表了0和1?

 這就對了,在我們的量子計算機里,一個bit不僅只有0或者1的可能性,它更可以表示一個0 和1的疊加!一個 “比特”可以同時記錄0和1,我們把它稱作一個 “量子比特 ”(qubit)。假如我們的量子 計算機讀入了一個10bits的信息,所得到的就不僅僅是一個10位的二進制數了,事實上,因為每個 bit都處在0和1的疊加態,我們的計算機所處理的是2^10個10位數的疊加!

 換句話說,同樣是讀入10bits的信息,傳統的計算機只能處理1個10位的二進制數,而如果是 量子計算機,則可以同時處理2^10個這樣的數!

 利用量子演化來進行某種圖靈機式的計算早在70年代和80年代初便由Bennett,Benioff等人進 行了初步的討論。到了1982年,那位極富傳奇色彩的美國物理學家理查德•費因曼(Richard Feynman)注意到,當我們試圖使用計算機來模擬某些物理過程,例如量子疊加的時候,計算量會隨 著模擬對象的增加而指數式地增長,以致使得傳統的模擬很快變得不可能。費因曼并未因此感到氣 餒,相反,他敏銳地想到,也許我們的計算機可以使用實際的量子過程來模擬物理現象!如果說模 擬一個 “疊加”需要很大的計算量的話,為什么不用疊加本身去模擬它呢?每一個疊加都是一個不同的 計算,當所有這些計算都最終完成之后,我們再對它進行某種幺正運算,把一個最終我們需要的答 案投影到輸出中去。費因曼猜想,這在理論上是可行的,而他的確猜對了!

 1985年,我們那位在埃弗萊特的諄諄教導和多宇宙論的熏陶下成長起來的大衛•德義奇 閃亮登場了。他仿照圖靈當年走的老路子,成功地證明了,一臺普適的量子計算機是可能的。所謂 “普 適機”(universal machine)的概念可能對大家有點陌生以及令人困惑,它可以回到圖靈那里,其基 本思想是,存在某種圖靈機,把一段指令編成合適的編碼對其輸入,可以令這臺機器模擬任何圖靈 機的行為。我無意在這里過于深入細節,因為那是相當費腦筋的事情,雖然其中的數學一點也不復 雜。如果各位有興趣深入探索的話可以參閱一些介紹圖靈工作的文章(我個人還是比較推薦彭羅斯的 《皇帝新腦》),在這里各位所需要了解的無非是:我們聰明睿智的德義奇先生證明了一件事,那就 是我們理論上可以建造一種機器,它可以模擬任何特殊量子計算機的過程,從而使得一切形式的量 子計算成為可能。傳統的電腦處理信息流的時候用到的是所謂的 “布爾邏輯門 ”(BooleanLogicGate), 比如AND,OR,NOT,XOR等等。在量子計算機中只需把它們換成相應的量子邏輯門即可。

 說了那么多,一臺量子計算機有什么好處呢?

 德義奇證明,量子計算機無法實現超越算法的任務,也就是說,它無法比普通的圖靈機做得更 多。從某種確定的意義上來說,量子計算機也是一種圖靈機。但和傳統的機器不同,它的內態是不 確定的,它同時可以執行多個指向下一階段的操作。如果把傳統的計算機稱為決定性的圖靈機 (Deterministic Turing Machine, DTM),量子計算機則是非決定性的圖靈機(NDTM)。德義奇同時證 明,它將具有比傳統的計算機大得多的效率。用術語來講,執行同一任務時它所要求的復雜性 (complexity)要低得多。理由是顯而易見的,量子計算機執行的是一種并行計算,正如我們前面舉 的例子,當一個10bits的信息被處理時,量子計算機實際上操作了2^10個態!

 在如今這個信息時代,網上交易和電子商務的浪潮正席卷全球,從政府至平民百姓,都越來越 依賴于電腦和網絡系統。與此同時,電子安全的問題也顯得越來越嚴峻,誰都不想黑客們大搖大擺 地破解你的密碼,侵入你的系統篡改你的資料,然后把你銀行里的存款提得精光,這就需要我們對 私隱資料執行嚴格的加密保護。目前流行的加密算法不少,很多都是依賴于這樣一個靠山,也即所 謂的“大數不可分解性 ”。大家中學里都苦練過因式分解,也做過質因數分解的練習,比如把15這個數 字分解成它的質因數的乘積,我們就會得到15=5×3這樣一個唯一的答案。

 問題是,分解15看起來很簡單,但如果要分解一個很大很大的數,我們所遭遇到的困難就變得 幾乎不可克服了。比如,把10949769651859分解成它的質因數的乘積,我們該怎么做呢?糟糕的是, 在解決這種問題上,我們還沒有發現一種有效的算法。一種笨辦法就是用所有已知的質數去一個一 個地試,最后我們會發現10949769651859=4220851×2594209(數字取自德義奇的著作The Fabric ofReality),但這是異常低效的。更遺憾的是,隨著數字的加大,這種方法所費的時間呈現出幾何式 的增長!每當它增加一位數,我們就要多費3倍多的時間來分解它,很快我們就會發現,就算計算時 間超過宇宙的年齡,我們也無法完成這個任務。當然我們可以改進我們的算法,但目前所知最好的 算法(我想應該是GNFS)所需的復雜性也只不過比指數性的增長稍好,仍未達到多項式的要求(所謂多

項式,指的是當處理數字的位數n增大時,算法所費時間按照多項式的形式,也就是n^k的速度增長)。

 所以,如果我們用一個大數來保護我們的秘密,只有當這個大數被成功分解時才會泄密,我們 應當是可以感覺非常安全的。因為從上面的分析可以看出,想使用 “暴力”方法,也就是窮舉法來破解 這樣的密碼幾乎是不可能的。雖然我們的處理器速度每隔18個月就翻倍,但也遠遠追不上安全性的 增長:只要給我們的大數增加一兩位數,就可以保好幾十年的平安。目前最流行的一些加密術,比 如公鑰的RSA算法正是建筑在這個基礎之上。

 但量子計算機實現的可能使得所有的這些算法在瞬間人人自危。量子計算機的并行機制使得它 可以同時處理多個計算,這使得大數不再成為障礙!1994年,貝爾實驗室的彼得•肖(Peter Shor)創造了一種利用量子計算機的算法,可以有效地分解大數(復雜性符合多項式!)。比如我們要 分解一個250位的數字,如果用傳統計算機的話,就算我們利用最有效的算法,把全世界所有的計算 機都聯網到一起聯合工作,也要花上幾百萬年的漫長時間。但如果用量子計算機的話,只需幾分鐘! 一臺量子計算機在分解250位數的時候,同時處理了10^500個不同的計算!

 更糟的事情接踵而來。在肖發明了他的算法之后,1996年貝爾實驗室的另一位科學家洛弗 •格魯弗(LovGrover)很快發現了另一種算法,可以有效地搜索未排序的數據庫。如果我們想 從一個有n個記錄但未排序的數據庫中找出一個特定的記錄的話,大概只好靠隨機地碰運氣,平均試 n/2次才會得到結果,但如果用格魯弗的算法,復雜性則下降到根號n次。這使得另一種著名的非公 鑰系統加密算法,DES面臨崩潰。現在幾乎所有的人都開始關注量子計算,更多的量子算法肯定會接 連不斷地被創造出來,如果真的能夠造出量子計算機,那么對于現在所有的加密算法,不管是RSA, DES,或者別的什么橢圓曲線,都可以看成是末日的來臨。最可怕的是,因為量子并行運算內在的機 制,即使我們不斷增加密碼的位數,也只不過給破解者增加很小的代價罷了,這些加密術實際上都 破產了!

 2001年,IBM的一個小組演示了肖的算法,他們利用7個量子比特把15分解成了3和5的乘積。當 然,這只是非常初步的進展,我們還不知道,是否真的可以造出有實際價值的量子計算機,量子態 的糾纏非常容易退相干,這使得我們面臨著技術上的嚴重困難。雖然2002年,斯坦弗和日本的科學 家聲稱,一臺硅量子計算機是可以利用現在的技術實現的,2003年,馬里蘭大學的科學家們成功地 實現了相距0.7毫米的兩個量子比特的互相糾纏,一切都在向好的方向發展,但也許量子計算機真正 的運用還要過好幾十年才會實現。這個項目是目前最為熱門的話題之一,讓我們且拭目以待。

 就算強大的量子計算機真的問世了,電子安全的前景也并非一片黯淡,俗話說得好,上帝在這 里關上了門,但又在別處開了一扇窗。量子論不但給我們提供了威力無比的計算破解能力,也讓我 們看到了另一種可能性:一種永無可能破解的加密方法。這是另一個炙手可熱的話題:量子加密術 (quantum cryptography)。如果篇幅允許,我們在史話的最后會簡單描述一下這方面的情況。這種 加密術之所以能夠實現,是因為神奇的量子可以突破愛因斯坦的上帝所安排下的束縛 ——那個宿命 般神秘的不等式。而這,也就是我們馬上要去討論的內容。

 但是,在本節的最后,我們還是回到多宇宙解釋上來。我們如何去解釋量子計算機那神奇的計 算能力呢?德義奇聲稱,唯一的可能是它利用了多個宇宙,把計算放在多個平行宇宙中同時進行, 最后匯總那個結果。拿肖的算法來說,我們已經提到,當它分解一個250位數的時候,同時進行著 10^500個計算。德義奇憤憤不平地請求那些不相信MWI的人解釋這個事實:如果不是把計算同時放到 10^500個宇宙中進行的話,它哪來的資源可以進行如此驚人的運算?他特別指出,整個宇宙也只不 過包含大約10^80個粒子而已。但是,雖然把計算放在多個平行宇宙中進行是一種可能的說法(雖然 聽上去仍然古怪),其實MWI并不是唯一的解釋。基本上,量子計算機所依賴的只是量子論的基本方 程,而不是某個解釋。它的模型是從數學上建筑起來的,和你如何去解釋它無干。你可以把它想象 成10^500個宇宙中的每一臺計算機在進行著計算,但也完全可以按照哥本哈根解釋,想象成未觀測 (輸出結果)前,在這個宇宙中存在著10^500臺疊加的計算機在同時干活!至于這是如何實現的,我

們是沒有權利去討論的,正如我們不知道電子如何同時穿過了雙縫,貓如何同時又死又活一樣。這 聽起來不可思議,但在許多人看來,比起瞬間突然分裂出了10^500個宇宙,其古怪程度也半斤八兩。 正如柯文尼在《時間之箭》中說的那樣,即使這樣一種計算機造出來,也未必能證明多世界一定就 比其它解釋優越。關鍵是,我們還沒有得到實實在在可以去判斷的證據,也許我們還是應該去看看 還有沒有別的道路,它們都通向哪些更為奇特的方向。

 我們終于可以從多世界這條道路上抽身而退,再好好反思一下量子論的意義。前面我們留下的 那塊“意識怪獸 ”的牌子還歷歷在目,而在多宇宙這里我們的境遇也不見得好多少,也許可以用德威特 的原話,立一塊 “精神分裂 ”的牌子來警醒世人注意。在哥本哈根那里,我們時刻担心的是如何才能使 波函數坍縮,而在多宇宙那里,問題變成了 “我”在宇宙中究竟算是個什么東西。假如我們每時每刻都 不停地被投影到無數的世界,那么究竟哪一個才算是真正的 “我”呢?或者, “我”這個概念干脆就應該 定義成由此刻開始,同時包含了將來 那n條宇宙岔路里的所有 “我”的一個集合?如果是這樣的話,那么 “量子永生”聽起來就不那么荒誕了: 在這個集合中 “我”總在某條分支上活著嘛。假如你不認同,認為 “我”只不過是某時某刻的一個存在, 隨著每一次量子測量而分裂成無數個新的不同的 “我”,那么難道我們的精神只不過是一種瞬時的概 念,它完全不具有連續性?生活在一個無時無刻不在分裂的宇宙中,無時無刻都有無窮個新的 “我” 的分身被制造出來,天知道我們為什么還會覺得時間是平滑而且連續的,天知道為什么我們的 “自我 意識”的連續性沒有遭到割裂。

 不管是哥本哈根還是多宇宙,其實都是在努力地試圖解釋量子世界中的這樣一個奇妙性質:疊 加性。正如我們已經在史話中反復為大家所揭示的那樣,當沒有觀測前,古怪的量子精靈始終處在 不確定的狀態,必須描述為所有的可能性的疊加。電子既在這里又在那里,在實際觀測之前并不像 以前經典世界中我們不言而喻地假定的那樣,有一個唯一確定的位置。當一個光子從A點運動到B點, 它并不具有經典力學所默認的一條確定的軌跡。相反,它的軌跡是一團模糊,是所有可能的軌跡的 總和!而且不單單是所有可能的空間軌跡,事實上,它是全部空間以及全部時間的路徑的總和!換 句話說,光子從A到B,是一個過去、現在、未來所有可能的路線的疊加。在此基礎之上費因曼建立 了他的 “路徑積分 ”(path integral)方法,用以計算量子體系在四維空間中的幾率振幅。我們在史話 的前面已經看到了海森堡的矩陣和薛定諤的波,費因曼的路徑積分是第三種描述量子體系的手段。 但同樣可以證明,它和前兩者是完全等價的,只不過是又一種不同的數學表達形式罷了。配合費因 曼圖,這種方法簡單實用,而且非常巧妙。把它運用到原子體系中,我們會驚奇地發現在絕大部分 路徑上,作用量都互相抵消,只留下少數可能的 “軌道”,而這正和觀測相符!

 我們必須承認,量子論在現實中是成功的,它能夠完美地解釋和說明觀測到的現象。可是要承 認疊加,不管是哥本哈根式的疊加還是多宇宙式的疊加,這和我們對于現實世界的常識始終有著巨 大的沖突。我們還是不由地懷念那流金的古典時代,那時候 “現實世界”仍然保留著高貴的客觀性血統, 它簡單明確,符合常識,一個電子始終有著確定的位置和動量,不以我們的意志或者觀測行為而轉 移,也不會莫名其妙地分裂,而只是一絲不茍地在一個優美的宇宙規則的統治下按照嚴格的因果律 而運行。哦,這樣的場景溫馨而暖人心扉,簡直就是物理學家們夢中的桃花源,難道我們真的無法 再現這樣的理想,回到那個令人懷念的時代了嗎?

 且慢,這里就有一條道路,打著一個大廣告牌:回到經典。它甚至把愛因斯坦拉出來作為它的 代言人:這條道路通向愛因斯坦的夢想。天哪,愛因斯坦的夢想,不就是那個古典客觀,簡潔明確, 一切都由嚴格的因果性來主宰的世界嗎?那里面既沒有擲骰子的上帝,也沒有多如牛毛的宇宙拷貝, 這是多么教人心動的情景。我們還猶豫什么呢,趕快去看看吧!

 時空倒轉,我們先要回到1927年,回到布魯塞爾的第五屆索爾維會議,再回味一下那場決定了 量子論興起的大辯論。我們在史話的第八章已經描寫了這次名留青史的會議的一些情景,我們還記

得法國的那位貴族德布羅意在會上講述了他的 “導波”理論,但遭到了泡利的質疑。在第五屆索爾維會 議上,玻爾的互補原理還剛剛出臺,粒子和波動還正打得不亦樂乎,德布羅意的 “導波”正是試圖解決 這一矛盾的一個嘗試。我們都還記得,德布羅意發現,每當一個粒子前進時,都伴隨著一個波,這 深刻地揭示了波粒二象性的難題。但德布羅意并不相信玻爾的互補原理,亦即電子同時又是粒子又 是波的解釋。德布羅意想象,電子始終是一個實實在在的粒子,但它的確受到時時伴隨著它的那個 波的影響,這個波就像盲人的導航犬,為它探測周圍的道路的情況,指引它如何運動,也就是我們 為什么把它稱作 “導波”的原因。德布羅意的理論里沒有波恩統計解釋的地位,它完全是確定和實在論 的。量子效應表面上的隨機性完全是由一些我們不可知的變量所造成的,換句話說,量子論是一個 不完全的理論,它沒有考慮到一些不可見的變量,所以才顯得不可預測。假如把那些額外的變量考 慮進去,整個系統是確定和可預測的,符合嚴格因果關系的。這樣的理論稱為 “隱變量理論 ”(HiddenVariable Theory)。

 德布羅意理論生不逢時,正遇上偉大的互補原理出臺的那一刻,加上它本身的不成熟,于是遭 到了眾多的批評,而最終判處它死刑的是1932年的馮諾伊曼。我們也許還記得,馮諾伊曼在那一年 為量子論打下了嚴密的數學基礎,他證明了量子體系的一些奇特性質比如 “無限后退”。然而在這些之 外,他還順便證明了一件事,那就是:任何隱變量理論都不可能對測量行為給出確定的預測。換句 話說,隱變量理論試圖把隨機性從量子論中趕走的努力是不可能實現的,任何隱變量理論 ——不管 它是什么樣的 ——注定都要失敗。

 馮諾伊曼那華麗的天才傾倒每一個人,沒有人對這位20世紀最偉大的數學家之一產生懷疑。隱 變量理論那無助的努力似乎已經逃脫不了悲慘的下場,而愛因斯坦對于嚴格的因果性的信念似乎也 注定要化為泡影。德布羅意接受這一現實,他在內心深處不像玻爾那樣頑強而充滿斗志,而是以一 種貴族式的風度放棄了他的觀點。整個3、40年代,哥本哈根解釋一統天下,量子的不確定性精神深 植在物理學的血液之中,眾多的電子和光子化身為波函數神秘地在宇宙中彌漫,眾星拱月般地烘托 出那位偉大的智者 ——尼爾斯•玻爾的魔力來。

 1969年諾貝爾物理獎得主蓋爾曼后來調侃地說: “玻爾給整整一代的物理學家洗了腦,使他們 相信,事情已經最終解決了。 ”

 約翰•貝爾則氣忿忿地說: “德布羅意在1927年就提出了他的理論。當時,以我現在看來 是丟臉的一種方式,被物理學界一笑置之,因為他的論據沒有被駁倒,只是被簡單地踐踏了。 ”

 誰能想到,就連像馮諾伊曼這樣的天才,也有陰溝里翻船的時候。他的證明不成立!馮諾伊曼 關于隱函數理論無法對觀測給出唯一確定的解的證明建立在5個前提假設上,在這5個假設中,前4 個都是沒有什么問題的,關鍵就在第5個那里。我們都知道,在量子力學里,對一個確定的系統進行 觀測,我們是無法得到一個確定的結果的,它按照隨機性輸出,每次的結果可能都不一樣。但是我 們可以按照公式計算出它的期望(平均)值。假如對于一個確定的態矢量 Φ我們進行觀測X,那么我們 可以把它坍縮后的期望值寫成 。正如我們一再強調的那樣,量子論是線性的,它可以疊加。如果我 們進行了兩次觀測X,Y,它們的期望值也是線性的,即應該有關系:

 = +

 但是在隱函數理論中,我們認為系統光由態矢量 Φ來描述是不完全的,它還具有不可見的隱藏 函數,或者隱藏的態矢量H。把H考慮進去后,每次觀測的結果就不再隨機,而是唯一確定的。現在, 馮諾伊曼假設:對于確定的系統來說,即使包含了隱函數H之后,它們也是可以疊加的。即有:

 = +

 這里的問題大大地有。對于前一個式子來說,我們討論的是平均情況。也就是說,假如真的有

隱函數H的話,那么我們單單考慮 Φ時,它其實包含了所有的H的可能分布,得到的是關于H的平均值。 但把具體的H考慮進去后,我們所說的就不是平均情況了!相反,考慮了H后,按照隱函數理論的精 神,就無所謂期望值,而是每次都得到唯一的確定的結果。關鍵是,平均值可以相加,并不代表一 個個單獨的情況都能夠相加!

 我們這樣打比方:假設我們扔骰子,骰子可以擲出1-6點,那么我們每扔一個骰子,平均得到 的點數是3.5。這是一個平均數,能夠按線性疊加,也就是說,假如我們同時扔兩粒骰子,得到的平 均點數可以看成是兩次扔一粒骰子所得到的平均數的和,也就是3.5+3.5=7點。再通俗一點,假設ABC 三個人同時扔骰子,A一次扔兩粒,B和C都一次扔一粒,那么從長遠的平均情況來看,A得到的平均 點數等于B和C之和。

 但馮諾伊曼的假設就變味了。他其實是假定,任何一次我們同時扔兩粒骰子,它必定等于兩個 人各扔一粒骰子的點數之和!也就是說只要三個人同時扔骰子,不管是哪一次,A得到的點數必定等 于B加C。這可大大未必,當A擲出12點的時候,B和C很可能各只擲出1點。雖然從平均情況來看A的確 等于B加C,但這并非意味著每回合都必須如此!

 馮諾伊曼的證明建立在這樣一個不牢靠的基礎上,自然最終轟然崩潰。終結他的人是大衛 •玻姆(David Bohm),當代最著名的量子力學專家之一。玻姆出生于賓夕法尼亞,他曾在愛因 斯坦和奧本海默的手下學習(事實上,他是奧本海默在伯克利所收的最后一個研究生),愛因斯坦的 理想也深深打動著玻姆,使他決意去追尋一個回到嚴格的因果律,恢復宇宙原有秩序的理論。1952 年,玻姆復活了德布羅意的導波,成功地創立了一個完整的隱函數體系。全世界的物理學家都吃驚 得說不出話來:馮諾伊曼不是已經把這種可能性徹底排除掉了嗎?現在居然有人舉出了一個反例!

 奇怪的是,發現馮諾伊曼的錯誤并不需要太高的數學技巧和洞察能力,但它硬是在20年的時間 里沒有引起值得一提的注意。David Mermin挪揄道,真不知道它自發表以來是否有過任何專家或者 學生真正研究過它。貝爾在訪談里毫不客氣地說: “你可以這樣引用我的話:馮諾伊曼的證明不僅是 錯誤的,更是愚蠢的! ”

 看來我們在前進的路上仍然需要保持十二分的小心。

********* 飯后閑話:第五公設

 馮諾伊曼栽在了他的第五個假設上,這似乎是冥冥中的天道循環,2000年前,偉大的歐幾里德 也曾經在他的第五個公設上小小地絆過一下。

 無論怎樣形容《幾何原本》的偉大也不會顯得過分夸張,它所奠定的公理化思想和演繹體系, 直接孕育了現代科學,給它提供了最強大的力量。《幾何原本》把幾何學的所有命題推理都建筑在 一開頭給出的5個公理和5個公設上,用這些最基本的磚石建筑起了一幢高不可攀的大廈。

 對于歐氏所給出的那5個公理和前4個公設(適用于幾何學的他稱為公設),人們都可以接受。但 對于第五個公設,人們覺得有一些不太滿意。這個假設原來的形式比較冗長,人們常把它改成一個 等價的表述方式: “過已知直線外的一個特定的點,能夠且只能夠作一條直線與已知直線平行 ”。長期 以來,人們對這個公設的正確性是不懷疑的,但覺得它似乎太復雜了,也許不應該把它當作一個公 理,而能夠從別的公理中把它推導出來。但2000年過去了,竟然沒有一個數學家做到這一點(許多時 候有人聲稱他證明了,但他們的證明都是錯的)!

 歐幾里德本人顯然也對這個公設感到不安,相比其他4個公設,第五公設簡直復雜到家了(其他 4個公設是:1,可以在任意兩點間劃一直線。2,可以延長一線段做一直線。3,圓心和半徑決定一

個圓。4,所有的直角都相等)。在《幾何原本》中,他小心翼翼地盡量避免使用這一公設,直到沒 有辦法的時候才不得不用它,比如在要證明 “任意三角形的內角和為180度 ”的時候。

 長期的失敗使得人們不由地想,難道第五公設是不可證明的?如果我們用反證法,假設它不成 立,那么假如我們導出矛盾,自然就可以反過來證明第五公設本身的正確性。但如果假設第五公設 不成立,結果卻導致不出矛盾呢?

 俄國數學家羅巴切夫斯基(N. Lobatchevsky)正是這樣做的。他假設第五公設不成立,也就是 說,過直線外一點,可以作一條以上的直線與已知直線平行,并以此為基礎進行推演。結果他得到 了一系列稀奇古怪的結果,可是它們卻是一個自成體系的系統,它們沒有矛盾,在邏輯上是自洽的! 一種不同于歐幾里得的幾何 ——非歐幾何誕生了!

 從不同于第五公設的其他假設出發,我們可以得到和歐幾里得原來的版本稍有不同的一些定 理。比如“三角形內角和等于180度 ”是從第五公設推出來的,假如過一點可以作一條以上的平行線, 那么三角形的內角和便小于180度了。反之,要是過一點無法作已知直線的平行線,結果就是三角形 的內角和大于180度。對于后者來說容易想象的就是球面,任何看上去平行的直線最終必定交匯。比 方說在地球的赤道上所有的經線似乎都互相平行,但它們最終都在兩極點相交。如果你在地球表面 畫一個三角形,它的內角和會超出180度,當然,你得畫得足夠大才測量得到。傳說高斯曾經把三座 山峰當作三角形的三個頂點來測量它們的內角和,但似乎沒有發現什么,不過他要是在星系間做這 樣的測量,其結果就會很明顯了:星系的質量造成了空間的明顯彎曲。

 羅巴切夫斯基假設過一點可以做一條以上的直線與已知直線平行,另一位數學家黎曼則假設無 法作這樣的平行線,創立了黎曼非歐幾何。他把情況推廣到n維中去,徹底奠定了非歐幾何的基礎。 更重要的是,他的體系被運用到物理中去,并最終孕育了20世紀最杰出的科學巨構 ——廣義相對論。

 玻姆的隱變量理論是德布羅意導波的一個增強版,只不過他把所謂的 “導波”換成了“量子 勢”(quantum potential)的概念。在他的描述中,電子或者光子始終是一個實實在在的粒子,不論 我們是否觀察它,它都具有確定的位置和動量。但是,一個電子除了具有通常的一些性質,比如電 磁勢之外,還具有所謂的 “量子勢 ”。這其實就是一種類似波動的東西,它按照薛定諤方程發展,在電 子的周圍擴散開去。但是,量子勢所產生的效應和它的強度無關,而只和它的形狀有關,這使它可 以一直延伸到宇宙的盡頭,而不發生衰減。

 在玻姆理論里,我們必須把電子想象成這樣一種東西:它本質上是一個經典的粒子,但以它為 中心發散出一種勢場,這種勢彌漫在整個宇宙中,使它每時每刻都對周圍的環境了如指掌。當一個 電子向一個雙縫進發時,它的量子勢會在它到達之前便感應到雙縫的存在,從而指導它按照標準的 干涉模式行動。如果我們試圖關閉一條狹縫,無處不在的量子勢便會感應到這一變化,從而引導電 子改變它的行為模式。特別地,如果你試圖去測量一個電子的具體位置的話,你的測量儀器將首先 與它的量子勢發生作用,這將使電子本身發生微妙的變化,這種變化是不可預測的,因為主宰它們 的是一些 “隱變量 ”,你無法直接探測到它們。

 玻姆用的數學手法十分高超,他的體系的確基本做到了傳統的量子力學所能做到的一切!但是, 讓我們感到不舒服的是,這樣一個隱變量理論始終似乎顯得有些多余。量子力學從世紀初一路走來, 諸位物理大師為它打造了金光閃閃的基本數學形式。它是如此漂亮而簡潔,在實際中又是如此管用, 以致于我們覺得除非絕對必要,似乎沒有理由給它強迫加上笨重而丑陋的附加假設。玻姆的隱函數 理論復雜繁瑣又難以服眾,他假設一個電子具有確定的軌跡,卻又規定因為隱變量的擾動關系,我

們絕對觀察不到這樣的軌跡!這無疑違反了奧卡姆剃刀原則:存在卻絕對觀測不到,這和不存在又 有何分別呢?難道,我們為了這個世界的實在性,就非要放棄物理原理的優美、明晰和簡潔嗎?這 連愛因斯坦本人都會反對,他對科學美有著比任何人都要深的向往和眷戀。事實上,愛因斯坦,甚 至德布羅意生前都沒有對玻姆的理論表示過積極的認同。

 更不可原諒的是,玻姆在不惜一切代價地地恢復了世界的實在性和決定性之后,卻放棄了另一 樣同等重要的東西:定域性(Locality)。定域性指的是,在某段時間里,所有的因果關系都必須維 持在一個特定的區域內,而不能超越時空來瞬間地作用和傳播。簡單來說,就是指不能有超距作用 的因果關系,任何信息都必須以光速這個上限而發送,這也就是相對論的精神!但是在玻姆那里, 他的量子勢可以瞬間把它的觸角伸到宇宙的盡頭,一旦在某地發生什么,其信息立刻便傳達到每一 個電子耳邊。如果玻姆的理論成立的話,超光速的通訊在宇宙中簡直就是無處不在,愛因斯坦不會 容忍這一切的!

 但是,玻姆他的確打破了因為馮諾伊曼的錯誤而造成的堅冰,至少給隱變量從荊棘中艱難地開 辟出了一條道路。不管怎么樣,隱變量理論在原則上畢竟是可能的,那么,我們是不是至少還保有 一線希望,可以發展出一個完美的隱變量理論,使得我們在將來的某一天得以同時擁有一個確定、 實在,而又擁有定域性的溫暖世界呢?這樣一個世界,不就是愛因斯坦的終極夢想嗎?

 1928年7月28日,距離量子論最精彩的華章 ——不確定性原理的譜寫已經過去一年有余。在這 一天,約翰•斯圖爾特•貝爾(John Stewart Bell)出生在北愛爾蘭的首府貝爾法斯特。 小貝爾在孩提時代就表現出了過人的聰明才智,他在11歲上向母親立志,要成為一名科學家。16歲 時貝爾因為尚不夠年齡入讀大學,先到貝爾法斯特女王大學的實驗室當了一年的實習工,然而他的 才華已經深深感染了那里的教授和員工。一年后他順理成章地進入女王大學攻讀物理,雖然主修的 是實驗物理,但他同時也對理論物理表現出非凡的興趣。特別是方興未艾的量子論,它展現出的深 刻的哲學內涵令貝爾相當沉迷。

 貝爾在大學的時候,量子論大廈主體部分的建設已經塵埃落定,基本的理論框架已經由海森堡 和薛定諤所打造完畢,而玻爾已經為它作出了哲學上最意味深長的詮釋。20世紀物理史上最激動人 心的那些年代已經逝去,沒能參予其間當然是一件遺憾的事,但也許正是因為這樣,人們得以稍稍 冷靜下來,不致于為了那偉大的事業而過于熱血沸騰,身不由己地便拜倒在尼爾斯•玻爾那幾 乎不可抗拒的個人魔力之下。貝爾不無吃驚地發現,自己并不同意老師和教科書上對于量子論的正 統解釋。海森堡的不確定性原理 ——它聽上去是如此具有主觀的味道,實在不討人喜歡。貝爾想要 的是一個確定的,客觀的物理理論,他把自己描述為一個愛因斯坦的忠實追隨者。

 畢業以后,貝爾先是進入英國原子能研究所(AERE)工作,后來轉去了歐洲粒子中心(CERN)。他 的主要工作集中在加速器和粒子物理領域方面,但他仍然保持著對量子物理的濃厚興趣,在業余時 間里密切關注著它的發展。1952年玻姆理論問世,這使貝爾感到相當興奮。他為隱變量理論的想法 所著迷,認為它恢復了實在論和決定論,無疑邁出了通向那個終極夢想的第一步。這個終極夢想, 也就是我們一直提到的,使世界重新回到客觀獨立,優雅確定,嚴格遵守因果關系的軌道上來。貝 爾覺得,隱變量理論正是愛因斯坦所要求的東西,可以完成對量子力學的完備化。然而這或許是貝 爾的一廂情愿,因為極為諷刺的是,甚至愛因斯坦本人都不認同玻姆!

 不管怎么樣,貝爾準備仔細地考察一下,對于德布羅意和玻姆的想法是否能夠有實際的反駁, 也就是說,是否真如他們所宣稱的那樣,對于所有的量子現象我們都可以拋棄不確定性,而改用某 種實在論來描述。1963年,貝爾在日內瓦遇到了約克教授,兩人對此進行了深入的討論,貝爾逐漸 形成了他的想法。假如我們的宇宙真的是如愛因斯坦所夢想的那樣,它應當具有怎樣的性質呢?要 探討這一點,我們必須重拾起愛因斯坦昔日與玻爾論戰時所提到的一個思想實驗 ——EPR佯謬。

 要是你已經忘記了EPR是個什么東西,可以先復習一下我們史話的8-4。我們所描述的實際上是

經過玻姆簡化過的EPR版本,不過它們在本質上是一樣的。現在讓我們重做EPR實驗:一個母粒子分 裂成向相反方向飛開去的兩個小粒子A和B,它們理論上具有相反的自旋方向,但在沒有觀察之前, 照量子派的講法,它們的自旋是處在不確定的疊加態中的,而愛因斯坦則堅持,從分離的那一刻起, A和B的狀態就都是確定了的。

 我們用一個矢量來表示自旋方向,現在甲乙兩人站在遙遠的天際兩端等候著A和B的分別到來 (比方說,甲在人馬座的方向,乙在雙子座的方向)。在某個按照宇宙標準時間所約好了的關鍵時刻(比 方說,宇宙歷767年8月12日9點整,聽起來怎么像銀英傳,呵呵),兩人同時對A和B的自旋在同一個 方向上作出測量。那么,正如我們已經討論過的,因為要保持總體上的守恒,這兩個自旋必定相反, 不論在哪個方向上都是如此。假如甲在某方向上測量到A的自旋為正(+),那么同時乙在這個方向上 得到的B自旋的測量結果必定為負(-)!

 換句話說,A和B ——不論它們相隔多么遙遠 ——看起來似乎總是如同約好了那樣,當A是+的 時候B必定是-,它們的合作率是100%!在統計學上,拿稍微正式一點的術語來說,(A+,B-)的相關 性(correlation)是100%,也就是1。我們需要熟悉一下相關性這個概念,它是表示合作程度的一個 變量,假如A和B每次都合作,比如A是+時B總是-,那么相關性就達到最大值1,反過來,假如B每次 都不和A合作,每當A是+是B偏偏也非要是+,那么(A+,B-)的相關率就達到最小值-1。當然這時 候從另一個角度看,(A+,B+)的相關就是1了。要是B不和A合作也不有意對抗,它的取值和A毫無 關系,顯得完全隨機,那么B就和A并不相關,相關性是0。

 在EPR里,不管兩個粒子的狀態在觀測前究竟確不確定,最后的結果是肯定的:在同一個方向 上要么是(A+,B-),要么是(A-,B+),相關性是1。但是,這是在同一方向上,假設在不同方向上 呢?假設甲沿著x軸方向測量A的自旋,乙沿著y軸方向測量B,其結果的相關率會是如何呢?冥冥中 一絲第六感告訴我們,決定命運的時刻就要到來了。

 實際上我們生活在一個3維空間,可以在3個方向上進行觀測,我們把這3個方向假設為x,y,z。 它們并不一定需要互相垂直,任意地取便是。每個粒子的自旋在一個特定的方向無非是正負兩種可 能,那么在3個方向上無非總共是8種可能(把每個方向想像成一根爻,那么組合結果無非是8個卦)。

xyz +++ + + +-+ +-- -++ - + --+

 對于A來說有8種可能,那么對于A和B總體來說呢?顯然也是8種可能,因為我們一旦觀測了A, B也就確定了。如果A是(+,+,-),那么因為要守恒,B一定是(-,-,+)。現在讓我們假設量子 論是錯誤的,A和B的觀測結果在分離時便一早注定,我們無法預測,只不過是不清楚其中的隱變量 究竟是多少的緣故。不過沒關系,我們假設這個隱變量是H,它可以取值1-8,分別對應于一種觀測 的可能性。再讓我們假設,對應于每一種可能性,其出現的概率分別是N1,N2……一直到N8。現在 我們就有了一個可能的觀測結果的總表:

Ax Ay Az Bx By Bz 出現概率

+ + + - - -N1

+ + - - - + N2 + - + - + - N3 + - - - + + N4 - + + + - -N5 - + - + - + N6 - - + + + - N7 - - - + + + N8

 上面的每一行都表示一種可能出現的結果,比如第一行就表示甲觀察到A在x,y,z三個方向上 的自旋都為+,而乙觀察到B在3個方向上的自旋相應地均為-,這種結果出現的可能性是N1。因為觀 測結果8者必居其一,所以N1+N2+…+N8=1,這個各位都可以理解吧?

 現在讓我們運用一點小學數學的水平,來做一做相關性的練習。我們暫時只察看x方向,在這 個方向上,(Ax+,Bx-)的相關性是多少呢?我們需要這樣做:當一個記錄符合兩種情況之一:當在 x方向上A為+而B同時為-,或者A不為+而B也同時不為-,如果這樣,它便符合我們的要求,標志著 對(Ax+,Bx-)的合作態度,于是我們就加上相應的概率。相反,如果在x上A為+而B也同時為+, 或者A為-而B也為-,這是對(Ax+,Bx-)組合的一種破壞和抵觸,我們必須減去相應的概率。

 從上表可以看出,前4種可能都是Ax為+而Bx同時為-,后4種可能都是Ax不為+而Bx也不為-, 所以8行都符合我們的條件,全是正號。我們的結果是N1+N2+…+N8=1!所以(Ax+,Bx-)的相關 是1,這毫不奇怪,我們的表本來就是以此為前提編出來的。如果我們要計算(Ax+,Bx+)的相關, 那么8行就全不符合條件,全是負號,我們的結果是-N1-N2-…-N8=-1。

 接下來我們要走得遠一點,A在x方向上為+,而B在y方向上為+,這兩個觀測結果的相關性是 多少呢?現在是兩個不同的方向,不過計算原則是一樣的:要是一個記錄符合Ax為+以及By為+, 或者Ax不為+以及By也不為+時,我們就加上相應的概率,反之就減去。讓我們仔細地考察上表, 最后得到的結果應該是這樣的,用Pxy來表示:

Pxy=-N1-N2+N3+N4+N5+N6-N7-N8

 嗯,蠻容易的嘛,我們再來算算Pxz,也就是Ax為+同時Bz為+的相關:

Pxz=-N1+N2-N3+N4+N5-N6+N7-N8

 再來,這次是Pzy,也就是Az為+且By為+:

Pzy=-N1+N2+N3-N4-N5+N6+N7-N8

 好了,差不多了,現在我們把玩一下我們的計算結果,把Pxz減去Pzy再取絕對值:

|Pxz-Pzy|=|-2N3+2N4+2N5-2N6|=2 |N3+N4-N5-N6|

 這里需要各位努力一下,超越小學數學的水平,回憶一下初中的知識。關于絕對值,我們有關 系式|x-y|≤|x|+|y|,所以套用到上面的式子里,我們有:

|Pxz-Pzy|=2 |N3+N4-N5-N6|≤2(|N3+N4|+|N5+N6|)

 因為所有的概率都不為負數,所以2(|N3+N4|+|N5+N6|)=2(N3+N4+N5+N6)。最后,我們 還記得N1+N2+...+N8=1,所以我們可以從上式中湊一個1出來:

2(N3+N4+N5+N6)=1+(-N1-N2+N3+N4+N5+N6-N7-N8)

 看看我們前面的計算,后面括號里的一大串不正是Pxy嗎?所以我們得到最終的結果:

|Pxz-Pzy|≤1+Pxy

 恭喜你,你已經證明了這個宇宙中最為神秘和深刻的定理之一。現在放在你眼前的,就是名垂 千古的 “貝爾不等式 ”。它被人稱為 “科學中最深刻的發現 ”,它即將對我們這個宇宙的終極命運作出最 后的判決。

 (我們的證明當然是簡化了的,隱變量不一定是離散的,而可以定義為區間 λ上的一個連續函數。 即使如此,只要稍懂一點積分知識也不難推出貝爾不等式來,各位有興趣的可以動手一試。)

2013-08-23 10:28

歡迎訂閱我們的微信公眾賬號!
春秋茶館訂閱號
微信號 season-tea(春秋茶館)
每天分享一篇科技/遊戲/人文類的資訊,點綴生活,啟迪思想,探討古典韻味。
  清末民初歷史人物  民初人物
孫中山的啟蒙者
近現代的嶺南,湧現出大批引領中國前行的先驅者,近代改良主義者,香港華人領袖何啟便是其中的一位。他不僅是孫中山在香港西醫書院的老師,更是孫中山走向革命道路的思想導師。
民族主義思想大師
章太炎(1869年1月12日-1936年6月14日),原名學乘,字枚叔。嗣因反清意識濃厚,慕顧炎武的為人行事而改名為絳,號太炎。中國浙江餘杭人,清末民初思想家,史學家,樸....
資助民初精神網
        回頂部     寫評論

 
評論集
暫無評論!
發表評論歡迎你的評論
昵稱:     登陸  註冊
主頁:  
郵箱:  (僅管理員可見)

驗證:   验证码(不區分大小寫)  
© 2011   民初思韻網-清末民初傳奇時代的發現與復興   版權所有   加入收藏    設為首頁    聯繫我們    1616導航